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The crystal structures of two proton-transfer compounds of

3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic

acid) with the aromatic polyamines 2,6-diaminopyridine

[namely 2,6-diaminopyridinium 3-carboxy-4-hydroxybenzene-

sulfonate monohydrate, C5H8N3
+�C7H5O6Sÿ�H2O, (I)] and

1,4-phenylenediamine [namely 1,4-phenylenediaminium 3-car-

boxylato-4-hydroxybenzenesulfonate, C6H10N2
2+�C7H4O6S2ÿ,

(II)] have been determined. Both compounds feature

extensively hydrogen-bonded three-dimensional layered

polymer structures having signi®cant interlayer �±� inter-

actions between the cation and anion species. In (I), the

pyridine N atom of the Lewis base is protonated and forms a

direct hydrogen-bonding interaction with the water molecule,

which together with the two amine groups of the cation and

the carboxylic acid group of the anion also give additional

interactions with O-atom acceptors of the sulfonate group. In

(II), a dianionic species results from deprotonation of both the

sulfonic and the carboxylic acid groups, and all available O-

atom acceptors interact with all dication donors, which lie

about inversion centres.

Comment

The systematics of the solid-state structures of the proton-

transfer compounds of 3-carboxy-4-hydroxybenzenesulfonic

acid (5-sulfosalicylic acid, 5-SSA) with Lewis bases have been

widely studied because of the good crystallinity of many of the

compounds. This feature is a result of the presence of sulfon-

ate and potential carboxyl O-atom acceptors available for

hydrogen-bonding interactions and has been useful for the

study of certain dif®cult-to-crystallize bases, e.g. theophylline

(a monohydrate; Madarasz et al., 2002), trimethoprim (a

dihydrate; Raj et al., 2003) and pyrimethamine (a mono-

hydrate; Hemamalini et al., 2005). However, examples of the

dianionic 5-SSA species are rare, being found only in bis-

(guanidinium) 5-sulfosalicylate monohydrate (Smith,

Wermuth & Healy, 2004). Although anhydrous compounds

of 5-SSA are known, for example the 1:1 compounds with

guanidine (Zhang et al., 2004) and 1,10-phenanthroline (Fan et

al., 2005), the structures usually incorporate at least one water

solvent molecule, which acts in a donor/acceptor capacity,

usually involving the aminium group in a direct hydrogen-

bonding interaction. This, with additional interactions, results

in mostly three-dimensional polymer structures, which in only

a small number of cases (those compounds with polycyclic

heteroaromatic amines) involve �±� stacking effects (Smith,

Wermuth & White, 2004).

Aniline-type proton-transfer compounds lend themselves

to structure building since the protonated primary amine

group will often give up to six interactions with available

acceptor atoms. The structures of the 1:1 compounds of 5-SSA

with aniline (Bakasova et al., 1991), the 4-X-substituted

anilines (X = F, Cl and Br; Smith et al., 2005a) and 4-amino-

benzoic acid (Smith et al., 2005b) have been reported.

However, apart from the structures of two 5-SSA compounds

with diamines, namely ethylenediaminium bis(5-sulfosalicy-
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Figure 1
The con®gurations and atom-numbering scheme for the DAP+ cation, the
5-SSAÿ anion and the water molecule in (I). Non-H atoms are shown as
30% probability displacement ellipsoids and hydrogen bonds are shown
as dashed lines.



late) tetrahydrate (Gao et al., 2004) and 4,40-bipyridinium

bis(5-sulfosalicylate) dihydrate (Muthiah et al., 2003), no

polyfunctional aniline-type compounds are known. We

therefore attempted to obtain crystalline compounds of 5-SSA

with aromatic polyamines with the aim of maximizing struc-

ture enhancement through both hydrogen bonding and

possibly �±� interactive effects. The work has yielded limited

success to date, but the two compounds whose crystal struc-

tures are reported here represent exceptions where good

crystalline products were obtained. These compounds resulted

from the reaction of 5-SSA with the aromatic polyamines

2,6-diaminopyridine (DAP) and 1,4-phenylenediamine (PDA),

viz. 2,6-diaminopyridinium 5-sulfosalicylate monohydrate, (I),

and 1,4-phenylenediaminium 5-sulfosalicylate, (II). Figs. 1 and

2 show the atom-numbering schemes used for the 5-sulfo-

salicylate anion and aminium cations in (I) and (II); these

numbering schemes are consistent with those previously

employed in 5-SSA structures reported by this group (Smith,

Wermuth & Healy, 2004; Smith, Wermuth & White, 2004;

Smith et al., 2005a,b). Both (I) and (II) involve proton transfer

with subsequent extensive hydrogen bonding involving avail-

able H-atom donor and acceptor atoms of both cation and

anion species, giving in both compounds three-dimensional

layered polymer structures (Tables 1 and 2).

In (I) (Fig. 3), single proton transfer to only the pyridine

hetero N atom occurs, and this group subsequently partici-

pates in a single hydrogen-bonding interaction with the water

molecule [N� � �O = 2.775 (5) AÊ ]. The water molecule also

provides hydrogen-bonding links between sulfonate O-atom

acceptors extending along the c direction [O1W� � �O53 =

2.897 (5) AÊ and O1W� � �O51i = 2.789 (5) AÊ ; symmetry code:

(i) x, y, z + 1], giving a total of ®ve interactions for the

sulfonate groups, including one with the carboxylic acid group

of the 5-SSA anion [O71ÐH71� � �O51iii = 2.621 (4) AÊ ;

symmetry code: (iii) xÿ 1; y; z]. The result is the formation of

an undulating layer structure in which the alternating DAP+

cations and 5-SSAÿ anions partially superimpose down the c

axial direction, with signi®cant �±� ring interactions [ring

centroid separation Cg� � �Cg = 3.54 (1) (intra) and 3.56 (1) AÊ

(inter)]. The overall result is a three-dimensional polymer

structure. There is no occurrence of the R2
2(8) dimer inter-

action found in the small number of reported co-crystals of

DAP [1:1 proton-transfer compounds with 2-nitrobenzoic acid

(Smith et al., 1999) and 2,4,6-trinitrobenzoic acid (Smith et al.,

2000)]. However, this interaction is probably absent because

of the interjection in (I) of the water molecule into the

hydrogen-bonding pattern.

The structure of (II), except for the layering, differs mark-

edly from that of (I) and those of the majority of the proton-

transfer compounds of 5-SSA. The most unusual feature is the

presence of dianionic 5-SSA species, despite the use of 1:1

stoichiometric reactant ratios in the preparation. Both amine

groups of the PDA molecule are protonated, which is also

unusual considering that the second amine group is relatively

acidic (pKa1,2 = 2.67 and 6.60). The crystallographic repeat unit

comprises the 5-SSA2ÿ anion and two centrosymmetric PDA2+

half-cations (A and B; Fig. 2). The Av and Bix molecular

portions represent the inversion-generated halves of the two

molecules [symmetry codes: (v) ÿx, ÿy, ÿz + 1; (ix) ÿx + 1,

ÿy + 1, ÿz]. The cations and anions form two-dimensional

sheet structures through a number of hydrogen-bonding

interactions involving all potential donor and acceptor atoms

of both molecular species [range 2.725 (3)±3.114 (2) AÊ ]. These

sheets are interlinked by N+ÐH� � �O hydrogen-bonding

interactions (Fig. 4) and stack down the c cell direction, the

alternating cation A±anion±cation B separation indicating

signi®cant �±� interaction [the inter-ring centroid distances

are cation A±anion = 3.73 (1) AÊ and cation B±anion =

3.75 (1) AÊ ]. The overall result is a three-dimensional polymer

structure.

In the 5-SSA anion species in (I) and (II), similar structural

and conformational features to those previously observed

(Smith, Wermuth & Healy, 2004; Smith, Wermuth & White,
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Figure 3
Structure extension through hydrogen-bonding interactions (shown as
broken lines) in (I), viewed along the a cell direction. Hydrogen bonds
are shown as dashed lines. [Symmetry code: (v) x, y, z ÿ 1; for other
symmetry codes, see Table 1.]

Figure 2
The atom-numbering scheme for the two centrosymmetric half-PDA2+

cations (A and B) and the 5-SSA2ÿ anion in (II) (30% probability
displacement ellipsoids). The intramolecular hydrogen bond is shown as a
dashed line. [Symmetry codes: (v) ÿx, ÿy, ÿz + 1; (ix) ÿx + 1, ÿy + 1,
ÿz.]



2004; Smith et al., 2005a,b) are found. The usual intra-

molecular hydrogen bond is found between the phenol OH

group and a carboxyl O atom [O2ÐH2� � �O72: 2.605 (4) AÊ for

(I), contracting as expected in (II) to 2.558 (2) AÊ , where the

carboxylic acid group is deprotonated]. This deprotonation

also results in a greater deviation from coplanarity of the

overall group with the benzene ring [C2ÐC1ÐC7ÐO71 =

171.1 (2)� for (II), cf. 176.3 (3)� for (I)]. There is no occurrence

of the strong intermolecular R2
2(8) cyclic carboxylic acid

interaction that is found in the 4-chloro- and 4-bromo-

anilinium compounds with 5-SSA (Smith et al., 2005a), nor of

the anilinium±sulfonate R2
2(8) dimer interaction commonly

found in the anhydrous guanidinium sulfonates (Russell et al.,

1994; Zhang et al., 2004; Haynes et al., 2004).

Experimental

The title compounds were synthesized by heating 1 mmol quantities

of 5-SSA and, respectively, DAP or PDA in 50% ethanol±water

(50 ml) for 10 min under re¯ux. After concentration to ca 30 ml,

partial room-temperature evaporation of the hot-®ltered solutions

gave pale-brown crystals of both (I) (m.p. 524±526 K) and (II) (m.p.

>555 K).

Compound (I)

Crystal data

C5H8N3
+�C7H5O6Sÿ�H2O

Mr = 345.34
Monoclinic, P21

a = 8.4778 (15) AÊ

b = 13.085 (2) AÊ

c = 6.7562 (11) AÊ

� = 105.001 (14)�

V = 723.9 (2) AÊ 3

Z = 2

Dx = 1.584 Mg mÿ3

Mo K� radiation
Cell parameters from 25

re¯ections
� = 12.6±15.8�

� = 0.27 mmÿ1

T = 297 (2) K
Prism, pale brown
0.40 � 0.30 � 0.30 mm

Data collection

Rigaku AFC-7R diffractometer
!±2� scans
1965 measured re¯ections
1726 independent re¯ections
1406 re¯ections with F 2 > 2�(F 2)
Rint = 0.014
�max = 27.5�

h = ÿ4! 11
k = 0! 17
l = ÿ8! 8
3 standard re¯ections

frequency: 150 min
intensity decay: 0.5%

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.034
wR(F 2) = 0.112
S = 0.89
1726 re¯ections
243 parameters

H atoms treated by a mixture of
independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.1P)2 + 0.0953P]

where P = (F 2
o + 2F 2

c )/3
(�/�)max = 0.002
��max = 0.25 e AÊ ÿ3

��min = ÿ0.24 e AÊ ÿ3

Compound (II)

Crystal data

C6H10N2
2+�C7H4O6S2ÿ

Mr = 326.32
Triclinic, P1
a = 6.9800 (14) AÊ

b = 9.1573 (15) AÊ

c = 10.849 (2) AÊ

� = 84.618 (14)�

� = 97.698 (16)�

 = 102.879 (14)�

V = 668.4 (2) AÊ 3

Z = 2
Dx = 1.621 Mg mÿ3

Mo K� radiation
Cell parameters from 25

re¯ections
� = 12.7±17.2�

� = 0.28 mmÿ1

T = 297 (2) K
Prism, pale brown
0.40 � 0.30 � 0.25 mm

Data collection

Rigaku AFC-7R diffractometer
!±2� scans
3477 measured re¯ections
3067 independent re¯ections
2678 re¯ections with F 2 > 2�(F 2)
Rint = 0.034
�max = 27.5�

h = ÿ3! 9
k = ÿ11! 11
l = ÿ14! 13
3 standard re¯ections

frequency: 150 min
intensity decay: 0.8%

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.040
wR(F 2) = 0.111
S = 0.83
3067 re¯ections
227 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(F 2
o) + (0.1P)2

+ 2.7752P]
where P = (F 2

o + 2F 2
c )/3

(�/�)max = 0.002
��max = 0.28 e AÊ ÿ3

��min = ÿ0.30 e AÊ ÿ3

organic compounds
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Table 1
Hydrogen-bond geometry (AÊ , �) for (I).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH2� � �O72 0.77 (8) 1.89 (8) 2.605 (4) 154 (8)
O1WÐH1A� � �O51i 0.79 (6) 2.02 (5) 2.789 (5) 163 (6)
O1WÐH1B� � �O53 0.85 (6) 2.10 (5) 2.897 (5) 157 (6)
N11ÐH11� � �O1W 0.78 (4) 2.00 (4) 2.775 (5) 173 (4)
N21ÐH21A� � �O2ii 0.76 (6) 2.35 (6) 3.054 (5) 154 (6)
N21ÐH21B� � �O52iii 0.94 (5) 2.04 (5) 2.936 (6) 161 (4)
N61ÐH61B� � �O53iv 0.81 (6) 2.49 (6) 3.252 (6) 158 (5)
O71ÐH71� � �O51iii 0.93 (6) 1.71 (6) 2.621 (4) 166 (6)

Symmetry codes: (i) x; y; z� 1; (ii) ÿx� 1; y� 1
2;ÿz� 1; (iii) xÿ 1; y; z; (iv)

ÿx� 2; yÿ 1
2;ÿz� 1.

Figure 4
A perspective view of the hydrogen-bonding associations in the layered
structure of (II), viewed along the a cell direction. Hydrogen bonds are
shown as dashed lines. [Symmetry codes: (vii) x, y, z + 1; (viii) x, y + 1, z;
(ix) ÿx + 1, ÿy + 1, ÿz; for other symmetry codes, see Table 2.]



H atoms involved in hydrogen-bonding interactions (pyridinium,

anilinium, carboxyl, phenol and water) were located by difference

methods, and their positional and isotropic displacement parameters

were re®ned. Other H atoms were included in the respective

re®nements at calculated positions (CÐH = 0.95 AÊ ) as riding atoms,

with Ueq values ®xed at 1.2Ueq(C).

For both compounds, data collection: MSC/AFC Diffractometer

Control Software (Molecular Structure Corporation, 1999); cell

re®nement: MSC/AFC Diffractometer Control Software; data reduc-

tion: TEXSAN for Windows (Molecular Structure Corporation,

1999); program(s) used to solve structure: SHELXS97 (Sheldrick,

1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick,

1997); molecular graphics: PLATON (Spek, 2003); software used to

prepare material for publication: PLATON.

The authors acknowledge ®nancial support from The

School of Physical and Chemical Sciences of the Queensland

University of Technology and Grif®th University.

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: TA1503). Services for accessing these data are
described at the back of the journal.
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Table 2
Hydrogen-bond geometry (AÊ , �) for (II).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH2� � �O72 0.88 (4) 1.74 (4) 2.558 (2) 152 (4)
N1AÐH11A� � �O71i 0.99 (4) 2.41 (4) 3.114 (2) 128 (3)
N1AÐH11A� � �O72i 0.99 (4) 1.84 (4) 2.808 (3) 168 (3)
N1BÐH11B� � �O53 0.96 (3) 1.90 (3) 2.812 (2) 157 (3)
N1AÐH12A� � �O71ii 0.91 (3) 1.83 (3) 2.725 (3) 166 (3)
N1BÐH12B� � �O52iii 0.89 (3) 2.01 (4) 2.868 (3) 161 (3)
N1AÐH13A� � �O2iv 0.90 (3) 2.43 (3) 3.015 (3) 123 (2)
N1AÐH13A� � �O51v 0.90 (3) 2.14 (3) 2.905 (3) 143 (3)
N1BÐH13B� � �O51vi 0.84 (3) 1.95 (3) 2.794 (3) 177 (3)

Symmetry codes: (i) ÿx� 1;ÿy� 1;ÿz� 1; (ii) x ÿ 1; y; z; (iii) ÿx� 1;ÿy;ÿz; (iv)
ÿx;ÿy� 1;ÿz� 1; (v) ÿx;ÿy;ÿz� 1; (vi) ÿx;ÿy;ÿz.


